Student Number:

SIG GH S

Teacher:

St George Girls High School

Mathematics Extension 2 2022 Trial HSC Examination

General Instructions	 Reading time – 10 minutes Working time – 3 hours Write using black pen Calculators approved by NESA may be a A reference sheet is provided For questions in Section I, use the Multiply provided For questions in Section II: Answer the questions in the bookletic on the start each question in a new writime Show relevant mathematical reasones Marks may not be awarded for incompresented solutions, or where multiply provided 	used le-Choice answer sheet ets provided ng booklet oning and/or calculations omplete or poorly tiple solutions are
Total marks: 100	 Section I - 10 marks (pages 3 - 6) Attempt Questions 1- 10 Allow about 15 minutes for this section 	Q1-10 Q11 Q12
	 Section II – 90 marks (pages 7 –12) Attempt Questions 11–16 Allow about 2 hour and 45 minutes for this section 	Q13 Q14 Q15 Q16

/10

/15

/15

/15

/15

/15

/15

/100

%

TOTAL

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section Use the multiple-choice answer sheet provided for Questions 1 to 10.

1. Which of the following is the complex number -2 + 2i?

(A) $\sqrt{2}e^{\frac{3\pi i}{4}}$ (B) $2\sqrt{2}e^{\frac{3\pi i}{4}}$ (C) $\sqrt{2}e^{-\frac{3\pi i}{4}}$ (D) $2\sqrt{2}e^{-\frac{3\pi i}{4}}$

2. Which Argand diagram shows the solutions of $z^5 - i = 0$?

3. The vector equation of a line joining the points L (1, 3, 5) and M (x, y, z) is

$$r = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 8 \\ 1 \end{pmatrix}.$$

Which of the following could be the coordinates of M?

- (A) (1, 5, −4)
- (B) (3,11,8)
- (C) (3, 12, 6)
- (D) (3, 11, 6)
- 4. Consider this statement about quadrilaterals:

"For all quadrilaterals, if the four sides are equal in length, then the quadrilateral is a rhombus."

Which of the following is the contrapositive of the statement?

- (A) If the four sides are not equal in length, then the quadrilateral is not a rhombus.
- (B) If the quadrilateral is not a rhombus, then the four sides are not equal in length.
- (C) There exists a quadrilateral such that the four sides are not equal in length and the quadrilateral is not a rhombus.
- (D) There exists a quadrilateral such that the quadrilateral is not a rhombus and the four sides are not equal in length.
- 5. Which expression is equivalent to $\int \tan^{-1} x \, dx$?

(A)
$$x \tan^{-1} x - \int \frac{x}{1+x^2} dx$$

(B)
$$x^2 \tan^{-1}x - \int \frac{x^2}{1+x^2} dx$$

(C)
$$\frac{x}{2}(\tan^{-1}x)^2$$

(D)
$$\frac{x}{2}(\tan^{-1}x)^2 - \int \frac{x}{\tan x} dx$$

6. Consider the statement

 $\exists x \in \mathbb{R}, \ln x = 1 \text{ and } x > 2.'$

Which of the following is the negation of the statement?

- (A) $\exists x \in \mathbb{R}, \ln x \neq 1 \text{ and } x \leq 2$
- (B) $\exists x \in \mathbb{R}, \ln x \neq 1 \text{ or } x \leq 2$
- (C) $\forall x \in \mathbb{R}, \ln x \neq 1 \text{ and } x \leq 2$
- (D) $\forall x \in \mathbb{R}, \ln x \neq 1 \text{ or } x \leq 2$
- 7. On an Argand diagram, a set of points lies on a circle of radius 3, centred at the origin. Which of the following defines this circle?
 - (A) $\{z \in \mathbb{C} : z\overline{z} = 3\}$
 - (B) $\{z \in \mathbb{C} : z^2 = 9\}$
 - (C) { $z \in \mathbb{C} : (z + \overline{z})^2 (z \overline{z})^2 = 36$ }
 - (D) $\{z \in \mathbb{C} : \operatorname{Re}(z^2) + \operatorname{Im}(z^2) = 9\}$
- 8. The angle between the vector $x_1 \overset{i}{i} + y_1 \overset{j}{j} + z_1 \overset{k}{k}$ and the x z plane is:

(A)
$$\sin^{-1}\left(\frac{y_1}{\sqrt{x_1^2 + y_1^2 + z_1^2}}\right)$$
.

(B)
$$\cos^{-1}\left(\frac{\sqrt{x_1^2+z_1^2}}{\sqrt{x_1^2+y_1^2+z_1^2}}\right).$$

(C)
$$\cos^{-1}\left(\frac{y_1}{\sqrt{x_1^2 + y_1^2 + z_1^2}}\right).$$

(D)
$$\sin^{-1}\left(\frac{\sqrt{x_1^2 + z_1^2}}{\sqrt{x_1^2 + y_1^2 + z_1^2}}\right).$$

9. Which expression is equal to $\int \sin^5 x \cos^2 x dx$?

(A)
$$-\frac{\cos^3 x}{3} + \frac{2\cos^5 x}{5} - \frac{\cos^7 x}{7} + C$$

(B) $\frac{\cos^3 x}{3} - \frac{2\cos^5 x}{5} + \frac{\cos^7 x}{7} + C$
(C) $-\frac{\sin^3 x}{3} + \frac{\sin^4 x}{2} - \frac{\sin^7 x}{7} + C$
(D) $\frac{\sin^3 x}{3} - \frac{\sin^4 x}{2} + \frac{\sin^7 x}{7} + C$

10. In the diagram, *ABC* is a triangle such that AC = 2AB and $\angle BAC = \frac{\pi}{3}$.

The vertices *A*, *B*, and *C* are represented by the complex numbers α , β and γ respectively.

Which of the following is the correct expression of the complex number γ ?

- (A) $\gamma = (1 + i\sqrt{3})(\beta \alpha) + \alpha$
- (B) $\gamma = (1 + i\sqrt{3})(\beta + \alpha) \alpha$
- (C) $\gamma = \frac{1}{2} \left(1 + i \sqrt{3} \right) (\beta \alpha) + \alpha$
- (D) $\gamma = (1 + i\sqrt{3})(\alpha \beta) + \alpha$

Section II 90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations

Ques	tion 11 (15 marks) Use a SEPARATE writing booklet.	Marks
(a)	Evaluate $i^{2021} + i^{2022}$.	2
(b)	Consider the complex number $\alpha = 1 - i$ and $\beta = -1 - i$. Express the following in the form $a + ib$, where a and b are real.	
	(i) $\alpha - \beta$	1
	(ii) β^2	1
	(iii) $\alpha + \frac{1}{\alpha \overline{\beta}}$	2
(c)	Find $\int \frac{\cos(\ln x)}{x} dx$	2

(d) A, B and C are three collinear points with position vectors
$$\underline{a}$$
, \underline{b} and \underline{c} respectively. 2
Point B lies between A and C with $|\overrightarrow{BC}| = \frac{1}{2} |\overrightarrow{AB}|$.
Find \underline{c} in terms of \underline{a} and \underline{b} .

(e) Disprove the statement:

'There exists $b \in \mathbb{N}$ such that $b^2 + 9b + 20$ is a prime number.'

The line *l* has equation $\frac{x-1}{k} = \frac{y-1}{3} = \frac{3-z}{6}$. Find the positive value of *k* for which (f) 3 the angle between line *l* and the x –axis is 120° .

2

Question 12 (15 marks) Use a SEPARATE writing booklet. Marks Find the values of *A*, *B*, and *C* such that: 3 (a) (i)

$$\frac{x^2 + x + 11}{(x+2)(x^2+9)} = \frac{A}{x+2} + \frac{Bx+C}{x^2+9}.$$

(ii) Hence find
$$\int \frac{x^2 + x + 11}{(x+2)(x^2+9)} dx.$$
 2

Let *P* and *Q* be points representing the complex numbers z_1 and $z_2 = -2 + 6i$ (b) respectively.

- If ΔPOQ forms an equilateral triangle with arg $z_2 > \arg z_1$, find the 3 (i) complex number represented by *P*, in the form a + ib.
- Hence find the area of the ΔPOQ . (ii)

(c) What is the value of this integral correct to 2 decimal places?

$$\int_{0.5}^1 \frac{x}{\sqrt{2x-x^2}} dx$$

Sketch the region on the Argand diagram defined by |z - 3i| > |z + 2|. 3 (d)

1

Question 13 (15 marks) Use a SEPARATE writing booklet. Marks Use integration by parts to find $\int e^x \sin x \, dx$. 3 (a)

The diagram *OABC* below is a right triangular pyramid in which (b) $|\overrightarrow{OA}| = 10$, $|\overrightarrow{OB}| = 20$ and $|\overrightarrow{OC}| = 10$, and $\angle AOB = \angle AOC = \angle BOC = 90^\circ$.

The unit vectors i, j and k are parallel to \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} respectively. The points *R* and *S* are the midpoints of *AB* and *BC* respectively.

	(i)	Determine the vectors \overrightarrow{OR} and \overrightarrow{OS} in terms of i, j and k .	2
	(ii)	Calculate, to the nearest minute, the angle between \overrightarrow{OR} and \overrightarrow{OS} .	2
	(iii)	Find the exact length of the perpendicular from <i>R</i> to \overrightarrow{OS} .	2
(c)	' <i>mnk'</i> : 2 nd and show t	represents a three-digit number, where m , n and k are the 1 st , d 3 rd digit respectively. If $m + n + k$ is divisible by three, hat mnk is divisible by three.	2
(d)	If $x =$	$x^2 = 1 - 2i$ is a root of $x^3 + px^2 - x + 15$, find p if p is a real number.	2
(e)	Prove such	by contradiction that there are no positive integers p and q , that $4p^2 - q^2 = 25$.	2

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) A sphere has a centre at (3, -3, 4) and its radius is 6 units.

A line has equation
$$r = \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$$
.

- (i) Write down the vector equation of the sphere.
- (ii) Determine whether the line is a tangent to the sphere, clearly justifying your conclusion.
- (b) For positive real number, *x*, *y* and *z*:

(i) Show that
$$x + \frac{1}{x} \ge 2$$
. 1

(ii) Hence show that
$$(x + y + z)\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \ge 9.$$
 2

(c) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate $\int_{0}^{\frac{\pi}{3}} \frac{1}{3 - \cos \theta} d\theta$. 4

Leave your answer correct to 2 decimal places.

(d) Let n be a natural number. For each of the following statements, decide whether it is true or false. If true, give a proof. If false, give a counter example.

(i)	If <i>n</i> is a multiple of 4 then so is n^2 .	2
(ii)	If n^2 is a multiple of 4 then so is n .	2

Marks

1

Question 15 (15 marks) Use a SEPARATE writing booklet.Marks(a) Find
$$\alpha$$
 and β given that $z^3 + 6z - 4\sqrt{2}i = (z - \alpha)^2(z - \beta)$.3

(b) Use an appropriate trigonometric substitution to show that

$$\int \frac{x^2}{\sqrt{9-x^2}} \, dx = \frac{9}{2} \sin^{-1} \frac{x}{3} - \frac{x}{2} \sqrt{9-x^2} + C.$$
3

(c) Lines l_1 and l_2 are given below, relative to a fixed origin O.

$$l_{1}: \qquad \underset{\sim}{r(t)} = \left(-9\underset{\sim}{i} + 10\underset{\sim}{k}\right) + \gamma \left(2\underset{\sim}{i} + \underset{\sim}{j} - \underset{\sim}{k}\right)$$
$$l_{2}: \qquad \underset{\sim}{r(t)} = \left(3\underset{\sim}{i} + \underset{\sim}{j} + 17\underset{\sim}{k}\right) + \mu \left(3\underset{\sim}{i} - \underset{\sim}{j} + 5\underset{\sim}{k}\right)$$

where γ and μ are scalar parameters.

- (i) Line l_1 meets line l_2 at the point A. What is the position vector of point A. 3
- (ii) Point *B* has position vector $5\underbrace{i}_{i} + 7j + 3k$. Does *B* lie on either line? 2

(d) (i) Show that
$$(1 + i \tan \theta)^n + (1 - i \tan \theta)^n = \frac{2 \cos n\theta}{\cos^n \theta}$$
, where $\cos \theta \neq 0, n \in \mathbb{Z}^+$. 2

(ii) By using the result in part (i), and by letting $z = i \tan \theta$, show that the roots of $(1 + z)^2 + (1 - z)^2 = 0$ are $z = \pm i \tan \frac{\pi}{4}$.

Question 16 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Show that
$$\frac{d}{dx}[(1+x)\ln(1+x) - x] = \ln(1+x).$$
 2

Consider the reduction formula $I_n = \int_0^1 x^n \ln(1+x) dx$ for n = 0, 1, 2, ...

(ii) Show that
$$(n+1)I_n = 2\ln 2 - \frac{1}{n+1} - nI_{n-1}$$
, $n = 1, 2, ...$ 3

(iii) Hence evaluate $4I_3$.

(b) Let the complex number
$$\alpha = \frac{1}{2}e^{i\theta}$$
, where θ is real.

(i) Show that the real part of the series

$$1 + \frac{1}{2}\alpha^3 + \frac{1}{4}\alpha^6 + \frac{1}{8}\alpha^9 + \dots \text{ is } \frac{256 - 16\cos 3\theta}{257 - 32\cos 3\theta}$$

$$\frac{1}{2^4}\sin 3\theta + \frac{1}{2^8}\sin 6\theta + \frac{1}{2^{12}}\sin 9\theta + \dots \text{ in terms of } \sin 3\theta \text{ and } \cos 3\theta.$$

(c) For *d*, an integer when d > 1, show that:

(i)
$$\frac{1}{d^2} < \frac{1}{d(d-1)}$$
. 1

(ii) Noting that
$$\frac{1}{d^2 - d} = \frac{1}{d - 1} - \frac{1}{d}$$
, 2

show that
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2 \text{ as } n \to \infty.$$

END OF EXAMINATION

2

3

Marks

Page 12

Mathematics Ext 2 Trial HSC 2022 Solutions & Marking Criteria MATHEMATICS EXTENSION 2-QUESTION Q1-10 (Multiple Choice) SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** Let z = -2 + 2i $|Z| = \sqrt{(-2)^2 + 2^2}$ = $\sqrt{4+4}$ = $\sqrt{8}$ = $2\sqrt{2}$ $\arg z = \tan^{-1}\left(\frac{-2}{2}\right)$ $=\pi - \tan^{-1}$ $\frac{=\pi - \pi}{= \frac{3\pi}{4}} = \frac{3\pi}{4}$ $\frac{3\pi}{4} = 2\sqrt{2}e^{\frac{\pi}{4}}$ B 2, $z^5 = 1$ Let z=r(ws0+isin0 $= r \cos \theta$ $Now r^{5}(\cos \theta)^{5} = c \sin \frac{\pi}{2}$ $r^{5} c \sin 5\theta = c \sin \frac{\pi}{2}$ $r^{5} = 1$ $r^{5} = 1$ $\theta = \frac{2}{10} + \frac{2k\pi}{5}$ $Z = \cos\left(\frac{\pi}{10} + \frac{2k\pi}{5}\right) + \frac{1}{15m}\left(\frac{\pi}{10} + \frac{2k\pi}{5}\right)$ $\begin{array}{c} k = 0 \\ k = 0 \\ k = 1 \\ k = 2 \\ k = 2 \\ k = -2 \\ k$ 21 C

Multiple choice **MATHEMATICS EXTENSION 2 – QUESTION** SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS $3_{\bullet} LM = \begin{pmatrix} \chi - i \\ \chi - 3 \end{pmatrix}$ $= \begin{pmatrix} 3 \\ 11 \end{pmatrix}$ D 4. Original statement: X > Y If the four sides are equal in length then the quadrilateral is a chombus Contrapositive: 7Y -> 7X If the quadrilateral is not a rhombus. then the four sides are not equal in B length. 5. ftan '21 dx $v'=1, u=tan^{-1}x$ $V = \chi u' = \frac{1}{1 + \chi^2}$ $= uv - \int v u^{\dagger} du$ = $x + an^{-1} x - \int x \cdot dx \cdot dx$ A 6. FRER, Inx = 1 and x>2 Negation VKER Inx # 1 or n 2 2. \cap $\frac{7. A. (x+iy)(x-iy)=3}{2^{2}+y^{2}=3}$ \times $B = (x + iy)^3 = 9$ $x^2 + 2xiy - y^2 = 9$ C. $(x + iy + x - iy)^{2} - (x + iy - x + iy)^{2} = 36$ $(2\pi)^{2} - (2iy)^{2} = 36$ $4\pi^{2} - 4x - y^{2} = 36$ $4(\pi^{2} + y^{2}) = 36$; $\pi^{2} + y^{2} = 9$

MATHEMATICS EXTENSION 2 - QUESTION Mu Hiple Choice MARKS MARKER'S COMMENTS SUGGESTED SOLUTIONS メリシャリシー+ 21年 8 2 (1<,,0,2,) x $\frac{1}{\sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}}$ $\cos\theta = \sqrt{\pi_1^2 + Z_1^2}$ $\sqrt{\pi_1^2 + y_1^2 + Z_1^2}$ $\theta = \cos^{-1} \sqrt{\chi_{1}^{2} + \chi_{1}^{2}} \sqrt{\chi_{1}^{2} + \chi_{1}^{2} + \chi_{1}^{2}}$ B 9. $I = \int \sin^{5} x \cos^{2} x dx$ $= \int \sin x \cdot \sin^{4} x \cos^{2} x dx$ [SINX (1-(0)² xL)² cos² x dx Let u = cosx $\therefore dy = -s m x dx$ $\therefore T = \int ((-\cos^2 n)^2 \cos^2 n s m x dx)$ $= -\int ((-u^2)^2 u^2 dy$ $= -\int \left((-2u^2 + u^4) u^2 dy \right)$ $= -\int u^2 - 2u^4 + u^6 dy$ $= - \frac{y^{3}}{3} + \frac{2u^{5}}{5} - \frac{u^{7}}{7} + c$ $= -\frac{\cos^{3}x}{2} + 2\cos^{5}x - \cos^{7}x + c A$

MATHEMATICS EXTENSION 2 - QUESTION Mulfiple Choice SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS 10. -(8 = B(B) TY A(a) By rotating vector \overrightarrow{AB} by \overrightarrow{T} and multiplying its magnitude by 2 we obtain \overrightarrow{AC} . $\overrightarrow{AC} = \overrightarrow{AB} \times 2x \operatorname{cis} \overrightarrow{T}$ $= (\beta - \alpha) \times 2 \times \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$ = (B-a) × 2(1/2 + 1/3) $=(\beta \rightarrow x) \times (1 + i \sqrt{3})$ but Ac=y-x x-a = (B-a) (1+ i 53) x= (B-a) (1+il3) + a A

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
a) $i^{202} = i^{2020}$.		
$=(i^2)^{1000}, i$		2 marks for
$= (-1)^{10}$		complete solution
$= 1 \times i$		and answer
= 1		
		1 mark for
1 = 1 . 1		either i ²⁰²¹ or
$=(i^2)^{1010}$. -1		i 2022 correct
= (x - 1)		
= -1		Question done
$i i^{2022} + i^{2020} = i - 1$		well. (Z)
$(i) \ a - \beta = 1 - i - (-1 - i)$		
= 1 - i + 1 + i		
= 2		1 mark (1
ii) $\beta^2 = (-(-i))^2$		
= 1 + 2i - 1	- 1/2	mark
= 2i	- 1/2	mark (i
$(ii) \propto + \frac{1}{2} = 1 - i + \frac{1}{(1 - i)(-1 + i)}$)	
$\sim \beta$ (1- $()$ (1- $()$	/	
$= \underline{1 - i + \underline{1}}$		mark Expand
-[+1+1+]		correctly
$= 1 - i + \frac{i}{2i} \times \frac{i}{2i}$		Emark for
		realising
$= 1 - i + \frac{1}{-2}$		
-2 - 2i - i		- 1/2 malk.
2		
= 2 - 3 i	2 -	1/2 maile
2	{	(2
$= 1 - \frac{3}{2}i$		

MATHEMATICS EXTENSION 2 – QUESTION SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS $c) \int \frac{\cos(\ln x)}{x} dx$ Let u= Inn $d_{\mu} = \frac{1}{\chi} d_{\mu}$ $= \int \cos u \cdot du$ 1 mark sinu +c -1 mark (2 sin(Inx)+C d) IF B divides AC into a ratio 2:1 then $|\vec{Bc}| = \frac{1}{2} |\vec{AB}| = --$ Now $\vec{Bc} = \underline{c} - \underline{b}$ and $\vec{AB} = \underline{b} - \underline{a}$ $\frac{d}{dc} - \frac{b}{dc} = \frac{1}{2} \left(\frac{b}{dc} - \frac{a}{dc} \right)$ 1 mark $C = \frac{1}{2} \frac{b}{c} - \frac{1}{2} \frac{a}{c} + \frac{b}{c}$ $c = \frac{3}{2}b - \frac{1}{2}a$ Imark or $=\frac{1}{2}\left(\frac{3b}{2}-\frac{a}{2}\right)$ 2

MATHEMATICS EXTENSION 2 – QUESTION 1			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
e) The negation statement is:			
$\frac{1}{b^2 + 9b + 20} = (b + 4)(b + 5)$		lmark	
But the product of two numbers is a composite number, that is, its not a prime number. i. Since the negation statement is true then the original statement is not true disproved.		1 maik.	
Note: This question was not answere Well. Many students used counter examples to disprove the statement. Low can't use counter examples to disprove a statement that says 'there exists' To disprove this statement successfully u counter examples, you will have to use ALL the numbers that make the statement false; and that is impossible to do unless you havefinite numbers	uith		

MATHEMATICS EXTENSION 2 - QUESTION 11
SUGGESTED SOLUTIONS
f)
$$\frac{x-1}{k} = \frac{y-1}{3} = \frac{3-2}{6}$$

L: $\frac{x-1}{k} = \frac{y-1}{3} = \frac{z-3}{-6}$
 $\frac{1}{k} = \frac{y-1}{-6} = \frac{z-3}{-6}$
 $\frac{1}{k} = \frac{y-1}{-6} = \frac{z-3}{-6}$
Now the direction vector of line $\frac{1}{2}$ is:
 $\frac{1}{2} = \frac{x}{-6}$
 $\frac{1}{2} = \frac{x}{-6$

MATHEMATICS EXTENSION 2 – QUESTION 12 $\frac{1}{(x+2)(x^{2}+1)} = \frac{A}{x+2} + \frac{Bx+C}{x^{2}+9}$: $z^{2} + z + \parallel = A(z^{1}+q) + (Bz+c)(z+2)$ Coefficients of x : A+B=1 94+26 =11 Constants : when x = -2, 4-2+11 = 13A :A=1 : B=0 : 6=1 3 morks Complete solution 2 marks Correctly finds at least one of A, B, or C mark Significant progress to finding A, B, or C Please state your full answer at the end; don't make the marker search through your working to final each part. $\int \frac{x^2 + z + 11}{(x+2)(x^2+9)} dx = \int \left(\frac{1}{x+2} + \frac{1}{x^2+9} \right) dx$ = la x +2 + 3 tan- 5 +C 2 morks Complete solution mark Correctly finds la x+2 of 3 tan "3 Generally very well done.

MATHEMATICS EXTENSION 2 - QUESTION 12 (continued) bi $z_{1} = Z_{2} \times \left(\cos(-\frac{\pi}{3}) + i \sin(-\frac{\pi}{3}) \right)$ = (-2+6i) × ($\frac{1}{2} - \frac{\sqrt{3}}{2}i$) = - |+3i + \sqrt{3}i + \sqrt{3}\sqrt{3} a Z2=-2160 P $= 3\sqrt{3} - 1 + i(3 + \sqrt{3})$ Full solution 3 marks 2 montes Correctly identifies |z, | <u>AND</u> rotation factor <u>Mark</u> Correctly identifies |z, | <u>AND</u> rotation factor <u>Mark</u> Correctly identifies |z, | <u>of</u> rotation factor Best answers drew a large, clear diagram to work from. A number of students gove answers that couldn't possibly produce an equilateral triangle. = -2+6c 4 + 36 = 540 22/10 : Area = 1×2 Jio x 2 Jio x sin = = 20× 4 = 10/3 mits2

MATHEMATICS EXTENSION 2 - QUESTION 12 (confined) $\int \frac{z}{2x-x^2} dx = -\int \frac{-z}{\sqrt{2x-x^2}} dx$ $= -\int_{1}^{1} \frac{1-x+1}{2x-x^{2}} dx$ $=\int \left[\frac{1-x}{\sqrt{2x-x^2}} + \frac{1}{\sqrt{2x-x^2}} \right] dx$ $\frac{-\frac{1}{2}\int (2-2x)(2x-x^2)^{\frac{1}{2}}dx - \int (1-(x-1)^2)^{\frac{1}{2}}dx}{\sqrt{1-(x-1)^2}}dx$ $= \frac{1}{2} \left[2 \left(2x - x^2 \right)^2 \right]_{\frac{1}{2}}^{1} - \left[\sin^{-1} \left(x - 1 \right) \right]_{\frac{1}{2}}^{1}$ =- 「「- 「=」 - 「sin" O - sin" (-s)] = 0. 389624... ÷ 0. 39 3 morks Full solution 2 marks Correct integration mark Correctly factorises clenominator $\int \frac{x}{(2x-x)} dx = \int \frac{x}{(1-(x-x))^2} dx \qquad \text{let } u_{2x-1} = p x = 0$ = $\int \frac{u_{+1}}{(1-(x-x))^2} dx \qquad \text{let } u_{2x-1} = p x = 0$ = $\int \frac{u_{+1}}{(1-(x))^2} du \qquad \text{du } = dx$ = $\int \frac{u_{+1}}{(1-(x))^2} du \qquad \text{when } x = \frac{1}{2}, \quad u_{2} = -\frac{1}{2}$ = $\int \frac{u_{+1}}{(1-(x))^2} du \qquad \text{when } x = \frac{1}{2}, \quad u_{2} = -\frac{1}{2}$ => x=uel u=0 $= \int_{-\infty}^{\infty} \left[\frac{u}{1-u^{2}} + \frac{1}{(1-u^{2})} du \right]_{-\infty}^{-\infty} du$ $= \int_{-\infty}^{\infty} u \left((1-u^{2})^{-\frac{1}{2}} du + \int_{-\infty}^{\infty} \frac{1}{\sqrt{1-u^{2}}} du$ $=-\frac{1}{2}\int_{-2u}^{0}(1-u^2)^{\frac{1}{2}}du^{-\frac{1}{2}}\int_{-\frac{1}{2}}^{0}du^{-\frac{1}{2}}du$ $\frac{1}{2} = \frac{1}{2} \left[2 \left(1 - u^{2} \right)^{\frac{1}{2}} - \frac{1}{2} \left[\sin^{-1} 0 - \sin^{-1} \left(-\frac{1}{2} \right) \right]$ Please write clearly! =-[1- 1= + [0-sir (-1)] This was a difficult question, = 0.389624 ... and we're trying to give you =0.39 for correct working, but it must be legible.

MATHEMATICS EXTENSION 2 - QUESTION 12 Continued) z-3i / z--2 i.e [He distance]) the distance from -2 from 3i $M_{=} = \frac{3}{2}$: m1 = -2 K ×(-,2) - 3/ y=-==+= 3 marks Full solution 2 marks Correct line (algebraically or graphically) Of Correct region, but missing labelled intercepts 1 marks Clearly identifies [distance from 3 i] and [distance from -2] This question could also be done algebraically: Given 12-31)>|Z+2|, let z=x+iy : |x+cy-32 > | 2+iy+2| |x+ i(y-3) > | x+2 +iy 2 2 + (y-32 > (x+2) + y2 x2+ y2-6y+9 > x2+4x+4+y2 -6y+97 42+4 64 6-4x+5 ソイ・テェ+ ミ Note that any algebra was only to support your answer: the most important thing was your graph.

MATHEMATICS EXTENSION 2 – QUESTION 13 exsinxdx = exsinc - Sexcosxdx V≈e^x N=Sinx 1'=ex U'= COSX = exsinx - Jerosx - S-ezinzdz 1=er U= COSK =exsinx - excesx - Sex sinzdu 4'=-Sinc Taex : 2 Sex sinx dx = exsinx - excosx : Sex simedx = jex (sinx - cosx) + C 3 marks Complete solution 2 marks Correctly uses integration by parts once 1 mark Clearly attempts to use integration by parts Generally well done, but don't forget the "+C"! $b_i S = \begin{pmatrix} 0 + 0 & 0 + 20 & 10 + 0 \\ 2 & 2 & 2 \end{pmatrix}$ c (0,0,10) (0,10,5) : 03 = 10; + 5k 5 (0,10,5) $R = \left(\frac{10+0}{2}, \frac{0+10}{2}, \frac{0+0}{2}\right)$ **B** (0,20,0) = (S, 10, D) =. 02 = 5i + 10j R (5,10,0) A (10,0,0) 2 marks Complete solution 1 mark Connectly finds of or of Clearly attempts to find the midpoint Many students made this question much more me consuming than necessary. Me consuming than necessary. Better responses included

b) <u>ii</u> 10 10 5 $\cos \Theta =$ 100 2 VI25 × JI25 45 · 0= cos- 4 = 36.8698 ... ÷ 36° 52' 2 marks Complete solution 1 mark Connect dot product or connect love or love 0 005-4 S ìį 2 1125 5 3 $\sin\left(\omega s^{-1}\frac{4}{5}\right) = \frac{z}{\sqrt{125}}$ · 5 · 25 : z = J125 Y = = 35 2 marks Complete solution I mark Correct approximate / Unsimplified answer Draw a diagram! This question can be solved easily using trigonometric

MATHEMATICS EXTENSION 2 - QUESTION /\$ (continued) > Let m+n+k=3P PEZ (since m+n+k is divisible by 3 "mnk" = 100m + 10n +k = 99m +9n + m + n+k = 99m + 91 + 3P = 3 (33m+31+P) which is divisible by 3 2 marks Complete solution mark Correctly writes "mak" as 100m+10n+k d) Given 1-2i is a noot, $(1-2i)^{7} + p(1-2i)^{2} - (1-2i) + 15 = 0$ -11+2i +p(-3-4i) -1+2i+15=0 p(-3-4i) = -3-4i : p=1 2 marks Complete solution I mank Correctly substitutes x=1-2i as a root Suppose there are positive integers p and q such that 4p2-q2=25 : (2p-2)(2p+2)=25 Since p and g are integers, (2p-q) and (2p+q) are also integers Since the integer factors of 25 are 1, 5, and 25, (2p+g) and (2p-g) are either 5 and 5, or 25 and 1. If they are 5 and 5, then q=0, which is a contradiction (q>0) : 2 p+q=25 and 2p-q=1 : 4p=26 $\rho = \frac{13}{2}$ which is a contradiction (ρ is an integer) .: the supposition is false .: there are no positive integers pand q such that $4p^2 - q^2 = 25$ 2 monks Complete solution mark Clearly states assumption of regation in full.

MATHEMATICS EXTENSION 2 - QUESTION 14
SUGGESTED SOLUTIONS
(a) i) Vector equation of a sphere is:

$$\frac{|r - (\frac{3}{4})| = 6}{|r - (\frac{3}{4})| = 6} - \frac{|mark|}{|r - (\frac{3}{4})| = 3} - \frac{|mark|}{|r - ($$

MATHEMATICS EXTENSION 2 – QUESTION 14 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS a) 11) Alternate solution From (*) sub in vector equation of the line $\begin{array}{c} 1+2\lambda \\ 5-\lambda \\ 4-\lambda \end{array} - \begin{array}{c} 3\\ -3\\ 4\end{array}$ =6 $\begin{array}{c|c} -2 + 2\lambda \\ \hline 8 - \lambda \\ \hline - \lambda \end{array} = 6$ Now $-2+2\lambda = 6$ <u>2) = 8</u> $\lambda = 4$ 15 $8 - \lambda = 6$ and $-\lambda = 6$ $\lambda = -6$ $\lambda = 2$ Since à is not consistent 1/2 i. the line is not a tangent. to the sphere.

MATHEMATICS EXTENSION 2 – QUESTION 14			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
b) i) Consider $(\pi - 1)^{2} \ge 0$ $\pi^{2} - 2\pi + 1 \ge 0$ $\pi^{2} + 1 \ge 2\pi$		[mark for correct proof.	
$\frac{1}{x} + \frac{1}{x} \ge 2 \qquad sin ce x > 0$ $\frac{1nequality sign}{holds}$			
Alternate <u>solution</u> ?			
$\frac{\left(\sqrt{11} - \frac{1}{\sqrt{11}}\right)^2}{\left(\sqrt{11} - \frac{1}{\sqrt{11}}\right)^2} \ge 0$	·		
$\chi -2 + \frac{1}{n} \ge 0$			
$\frac{1}{1} + \frac{1}{1} \ge 2$			
ii) Now $(x+y+z)\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1+\frac{x}{2}+\frac{x}{2}+\frac{y}{2}+1+\frac{y}{2}+\frac{z}{2}$ $+\frac{z}{2}+1$		1/2 mark	
$= 3 + \left(\frac{\pi}{y} + \frac{y}{x}\right) + \left(\frac{x}{z} + \frac{z}{z}\right)$		1/2 mark	
Let $x \rightarrow \frac{x}{y}$, and $x \rightarrow \frac{x}{z}$, $x \rightarrow \frac{y}{z}$			
$= 3 + \left(x + \frac{1}{x}\right) + \left(x $	om (1) -	- ¹ / ₂ mark ¹ / ₂ mark 2	
Some students are still starting their proofs with the inequality they have to prove. Ze	ro ma	rles)	

MATHEMATICS EXTENSION 2 – QUESTION 14 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS d) i) Statement is true $Let n = 4m, m \in \mathbb{Z}^+$ Now $\frac{n^{2}}{= 16a^{2}} = \frac{4a^{2}}{= 16a^{2}} = \frac{4}{2} \times 4a^{2}$ Imark - Imark which is divisible by 4 ... if n is a multiple of 4 then so 15 n2 ii) Statement is false Using a counter example $Lct n^2 = 36$ as Imark 36 is a multiple of 4. but 136=6 is not a Inark multiple of 4 ... If nº is a multiple of 4 then so is n is a false statement. This part was answered well overall.

MATHEMATICS EXTENSION 2 – QUESTION 15			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
$\begin{array}{c} \underline{\alpha} \\ \hline For \\ \underline{z^{3}+6z-4\sqrt{2}i} = (\underline{z}-\underline{\alpha})^{2}(\underline{z}-\underline{\beta}) \\ \hline RHS \text{ of } \underbrace{\cancel{x}} \\ \underline{(z^{2}-2\underline{z}\underline{\alpha}+\underline{\alpha}^{2})(\underline{z}-\underline{\beta})} \\ = \underline{z^{3}-2\underline{\alpha}\underline{z}^{2}+\underline{\alpha}^{2}\underline{z}} - \underline{\beta}\underline{z^{2}+2\underline{\alpha}}\underline{\beta}\underline{z} - \underline{\alpha}^{2}\underline{\beta} \\ \underline{z^{3}+z^{2}(-2\underline{\alpha}-\beta)+z}(\underline{\alpha}^{2}+\underline{2}\underline{\alpha}\underline{\beta}) - \underline{\alpha}^{2}\underline{\beta}} \\ \hline From (\underbrace{\cancel{x}} \end{array}$		This question was not well attempted. Imark	
$z^{3}+6z-4\sqrt{2} \ i = z^{3}+z^{2}(-2\lambda-\beta)+z(\lambda^{2}+2\lambda\beta)-\lambda^{2}\beta$ Equating coefficients: $z^{2}: -2\alpha-\beta=0$ $\beta = -2\alpha(1)$ $z: -\lambda^{2}+2\alpha\beta = 6(2)$ constant:		12 mark	
Now sub (1) into (2)		1/2 mark. 1/2 mark. 1/2 mark for testing a=±12i to see which softisfies the polynomial.	
Sub in (1) $\beta = -2\sqrt{2}i$		zmark (3)	

MATHEMATICS EXTENSION 2 – QUESTION 15 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS a) Alternate solution From the line marked in the above solution Sub () into (3) $\alpha^2(-2\alpha) = 4\sqrt{2}i$ $\frac{-2\alpha^{3} = 4\sqrt{2}i}{\alpha^{3} = -2\sqrt{2}i}$ $\frac{\alpha = -\sqrt{2}xi}{=\sqrt{2}i}$ Imark sub in D $B = -2\sqrt{2}i$ - 1/2 malk Note: Most students used the first method byt did not test both values of x== ti If they gave the answer of $x = \pm \sqrt{2}i$ and $\beta = \pm 2\sqrt{2}i$ then 21/2 marks were awarded. Please review the Polynomials section in complex numbers.

MATHEMATICS EXTENSION 2 – QUESTION 15		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$= b) LHS = \int \frac{\chi^2}{\sqrt{9 - \chi^2}} dx$	-	
Let x=3sin0 dx=3cos0d	θ.	
$= \int \frac{9\sin^2\theta}{\sqrt{9-9\sin^2\theta}} \times 3\cos\theta d\theta$	-	mark
$= \int \frac{9\sin^2\theta}{\sqrt{9(1-\sin^2\theta)}} \times 3\cos\theta d\theta$		
$=\frac{1}{3}\int\frac{9\sin^2\theta}{\sqrt{\cos^2\theta}} \times 3\cos\theta d\theta$		
$=9\int \frac{\sin^2\theta}{\cos\theta} \cdot \cos\theta d\theta$		
$= 9 \int \sin^2 \theta d\theta$		1/2 malk
$=9\int \frac{1}{2}(1-\cos 2\theta)d\theta$		
$=\frac{9}{2}\left[\theta - \frac{\sin 2\theta}{2}\right] + C$ If $\pi = 3s$		l mark
$= \frac{9}{2} \left[\theta - \chi \sin \theta \cos \theta \right] + c \qquad \sin \theta = \frac{x}{3}$ $\chi \qquad 3 \qquad \theta = \sin \theta$	175	1/2 mark
$= \frac{9}{2} \left(\sin^{-1} \frac{x}{3} - \frac{x}{3} \times \frac{9 - \chi^2}{2} \right) + C$		s mark to write
$= \frac{9}{2} \sin^{-1} \frac{2}{3} - \frac{2}{3} \sqrt{9 - 2^2} + c$		ofsc
=RHS		(3)
Note: Students were asked to use trig substitute but many used other substitutions which made a	tions to in t diffice	tegate It to simplify the

MATHEMATICS EXTENSION 2 – QUESTION 15		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
c) ii) For point B $\begin{pmatrix} 5\\ 3\\ -1 \end{pmatrix}$ to satisfy line $d_{j}: \begin{pmatrix} -9\\ 0\\ 10 \end{pmatrix} + 8 \begin{pmatrix} 2\\ -1\\ -1 \end{pmatrix}$		
We need to find a scalar y, where $\begin{pmatrix} 5\\7\\3 \end{pmatrix} = \begin{pmatrix} -9\\-9\\-1 \end{pmatrix} + y \begin{pmatrix} 2\\-1\\-1 \end{pmatrix}$		
$\mathcal{Y}\begin{pmatrix}2\\-\\-\\-\\-\end{pmatrix} = \begin{pmatrix}5\\7\\3\end{pmatrix} - \begin{pmatrix}-9\\-\\0\\0\end{pmatrix}$	- - -	
$= \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $= 7 \begin{pmatrix} 2 \\ i \\ -1 \end{pmatrix}$		
.: j=7 .: B lies on line d	-	
OR From (*) We need to find a consistent		
scalar = 5, such that:-9+2g=5, g=7-0+g=7, g=7		1 mark for showing
For Point B to satisfy $\begin{pmatrix} 3\\1\\17 \end{pmatrix} + \mu\begin{pmatrix} 3\\-1\\5 \end{pmatrix}$		that y=7 for all three equations.
$3 + 3\mu = 5$ $\mu = \frac{2}{3}$ $1 - \mu = 7$ $\mu = -6$ $17 + 5\mu = 3$ $\mu = -2\frac{4}{5}$	2	1 mark for showing A is not consistent and stating that
The scalar juis not consistent 		B lies on L, and not on dz from above marking
		2

MATHEMATICS EXTENSION 2 – QUESTION 15			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
$\frac{d(i)}{LHS} = (1+i\tan\theta)^{n} + (1-i\tan\theta)^{n}$ $= (\cos\theta + i\sin\theta)^{n} + (\cos\theta - i\sin\theta)^{n}$			
$= \frac{(\cos\theta + i\sin\theta)^{n}}{(\cos\theta - i\sin\theta)^{n}} + \frac{(\cos\theta - i\sin\theta)^{n}}{(\cos\theta - i\sin\theta)^{n}}$	_	- Imark	
$= \frac{\cos n\theta + i \sin n\theta + \cos n\theta - i \sin n\theta}{-\cos^n \theta}$		-Imark for using DeMoivres theorem and	
$= \frac{2\cos n\theta}{\cos^2 \theta}$ $= RHS$		simplifying	
Alternate solution:		Man students	
$-L_{0} + 2_{1} = 1 + (+ 2\pi) 0 \qquad $	-	used this method as well.	
$= \sec i \Theta = \sec i \Theta$ $= \frac{\arg z}{z} = \frac{\tan^{-1}(\tan \theta)}{\tan^{-1}(\tan \theta)} = -\Theta$	}	2 marks for complete work	
$LHS = (1 + itan \theta)^{n} + (1 - itan \theta)^{n}$ = (Sec \theta cis \theta)^{n} + (Sc \cap Cis \frac{1}{2} + (Sc \cap Cis \bot Cis \bot Cis \bot Cis \bot Cis \bo		I mark for	
$= sec^{n} C (s n \theta + sec n \theta - c (s) - n \theta)$ = sec^{n} C (cos n \theta + i sin n \theta + cos(n \theta) + sin(n \theta))		progressing to the proof and using De Moivres	
$= \frac{-sec^{\circ}\theta \left[\cos n\theta + isin \theta + cos n\theta - isin n\theta\right]}{-sec^{\circ}\theta \times 2cos n\theta}$ $= \frac{2cos n\theta}{-sec^{\circ}\theta \times 2cos n\theta} = RHS$		theorem (2)	
COS [°] O			

MATHEMATICS EXTENSION 2 – QUESTION 15		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
d) ii) Let $z = i \tan \theta (i)$		
Now given that $\mathcal{D} = (1+z)^2 + (1-z)^2$		
$O = (1 + \frac{i \tan \theta}{2} + (1 - i \tan \theta)^{2} - \frac{1}{2}$		
$\frac{COS^2Q}{COS^2Q}$		
$\frac{1}{\cos 2\theta} = 0 \qquad -$		2 mark.
$2\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \cdots$		
$\theta = \frac{\pi}{4}, \frac{3\pi}{4} = \frac{1}{4}$		1/2 mark
when $\theta = \frac{\pi}{4}$ sub in θ'		
$Z_{+} = i \tan(\overline{1}_{4}) \qquad \qquad$		- 1/2 miark
when $\theta = \frac{3\pi}{4}$ sub in (1)		
$Z_2 = \frac{1}{4} \tan \frac{3\pi}{4}$	_	
$= i \tan(-\frac{\pi}{4})$) -	1/2 mark to show
$=-i\tan\frac{\pi}{4}$		$i \tan\left(\frac{-\pi}{4}\right) = -i \tan \pi$
$\therefore \text{ the roots of } (1+z)^2 + (1-z)^2 = 0$	·	did not show
are $z = \pm i \tan \pi$.		this).

MATHEMATICS EXTENSION 2 – QUESTION 16 let u= Hz 1 = ln (1+2) $\frac{d}{dx} \left[\frac{(1+x)\ln(1+x) - x}{1 + x} \right] = \frac{1}{1 + \ln(1+x)} - \frac{1}{1 + x} \frac{$ 1+2 = ln(1+x) + 1+x -1 = ln (1+21) + 1-= ln (1+x) 2 Marks Complete solution 1 Mark Shows significant progress $\frac{l_{1}}{u_{1}} = \frac{1}{2} \frac{1}{u_{1}} \frac{1}{2} \frac{1}{u_{1}} \frac{1}{u$ [I== ('z" la(1+x) dx = [x { (1+x) ln(1+x) - x}] - { [nx"-1{ (1+x) ln(1+x) - x}] dx = $1 \{ 2 \ln 2 - i \} - n \{ \{ x^{n-1} \ln (i + x) + 2^n \ln (i + x) - x^n \} dx$ = 2/12-1 - n & xn-1/n (1+x)dx - n & xn/n (1+x)dx + n & xndx = 2102 -1 -n In-1 - n In + n [=] -2112-1-11- - 1I += $: n T_{n+1} = 2l_{n}2 - n T_{n-1} - 1 + \frac{n}{n+1}$ = 2112 - nIn-1 - # + + + =262-nIn-1-1-1-1 =242-1- - n Ta-1 3 marks Complete solution 2 morks Correct up to and including substitution for mili-, on milin I mark Correctly attempts to use integration by parts A three-mork "show" greation requires you to show every step; don't take shortcuts. Better solutions used lots of paper and took everything step by step. Also, fudging your onswer so that it matches the final result cannot earn marks, and is in fact an error.

MATHEMATICS EXTENSION 2 - QUESTION 16 (continued)
$111 4I_3 = 2I_2 - \frac{1}{3+1} - 3I_2$ (from port ii)
$=2l_{n}2-\frac{1}{4}-[2l_{n}2-\frac{1}{277}-2T_{r}]$
=212-+-242++++==[212-++-I.]
$-2 \ln 2 - \frac{1}{4} - 2 \ln 2 + \frac{1}{3} + 2 \ln 2 - \frac{1}{2} - \int_{0}^{1} \ln(1+z) dz$
$-2l_{n2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{2} - \left[(1+z) l_{n} (1+z) - z \right]_{0}^{1}$
-2Lo2-++3-5-[2L-2-1)-(141-0)]
× 1 • ‡ • <u>3</u> - <u>1</u>
= 7/12
Zmarks Complete solution
I mark Coinect state ment for 512 = 10
$1 \cdot \tau + 13$ T tot
$\frac{D}{T_1} \perp \frac{1}{T_2} \perp \frac{1}{T_2} \perp \frac{1}{T_3} \perp \frac{1}$
$\cdot 00$ with r_{1}
$23 \left(\frac{1}{3} e^{i\theta} \right)^3$
$=\frac{1}{12}e^{i3\theta}$
$S_{2} = \frac{1}{2}$
$1 - \frac{1}{6}e^{(3\theta)}$
16
16 - (cos30+isin30)
16
$(16 - \cos 3\theta) - i\sin 3\theta$
$16\left[\left(16 - \cos 3\theta\right) + i\sin 3\theta\right]$
$\left[(16 - \cos 3\theta) - i \sin 3\theta \right] \left[(16 - \cos 3\theta) + i \sin 3\theta \right]$
$\frac{256 - 16\cos 3\theta + (61\sin 3\theta)}{12}$
$(16 - 60530)^{-1} - (-5)^{-3}0^{-1}$
$\frac{256 - 10\cos 30 + 16\cos 130}{256 - 220}$

MATHEMATICS EXTENSION 2 - QUESTION 16 (continued) 256 -16 cos 30 + 16; sin 30 256 -32 0030 +1 256 -16 cos 30 + 16 i sin 30 257 - 32 0530 : real part is 256-16.0550 257-32.0050 3 marks Complete solution I marks Correctly identifies common ratio $r = \frac{1}{16}e^{i30}$ Many students showed no understanding of summing a series, or even that this is a series. better solutions worked slowly and methodically clearly showing each step. **b)** <u>ii</u> $T_2 = \frac{1}{16} e^{i20}$ $=\frac{1}{24}(\cos 3\theta + i\sin 3\theta)$ = 1/24 cos30 + 1/24 sin30 $T_{2} = \frac{1}{256} e^{i60}$ = 1/2= (10560 + 15/160) $= \frac{1}{18} (0560 + \frac{i}{18} sin60$: _ _ usin 30 + _ wsin 60 + ... is the imaginary part of the series 2 marks Complete solution. I mark Clearly shows that 24 sin 30 + 1 sin 60 + is the imaginary part of the series. Not well done. Mony students need thorough revision of series.

MATHEMATICS EXTENSION 2 - QUESTION 16 (continued) 1-6<6 10 : d2>d(d-1) (since d>1) : J= < J(d-1) Remember that when proving a result, you cannot rely on the truth of that result in your proof. For d=2: 1/2 (2(2-1) (from parti) Similarly for d=3: 1/3 (3-1) d=n = K m(n-1) Summing: $\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{(n-1)^4} + \frac{1}{n^2} < 2(2 \cdot 1) + 3(2 \cdot 1)^4 \dots + (n \cdot 1)(n-2)^4 - n(n \cdot 1)$ くしょう : たうシャシャー・+ # くし+レ+ 42++ 42 (as lim 1 = 0) 2 marks Complete solution 1 mark Clearly shows 1/2 < J-1 - of for several values of d(eg. 1/2 < 1/2 etc.) For a two-mark "show" question you should expect to show a number of steps.